1. Dear Drugs-Forum readers: We are a small non-profit that runs one of the most read drug information & addiction help websites in the world. We serve over 4 million readers per month, and have costs like all popular websites: servers, hosting, licenses and software. To protect our independence we do not run ads. We take no government funds. We run on donations which average $25. If everyone reading this would donate $5 then this fund raiser would be done in an hour. If Drugs-Forum is useful to you, take one minute to keep it online another year by donating whatever you can today. Donations are currently not sufficient to pay our bills and keep the site up. Your help is most welcome. Thank you.
    PLEASE HELP

Microscopic Magnified Crystals Could be the Future of Drug Delivery System

Rating:
5/5,
  1. Beenthere2Hippie
    Microscopic crystals could soon be zipping life-saving drugs around your body, taking them to diseased organs. This would have been impossible in the past, because the crystals, which have special magnetic properties, were so small that scientists could not control their movement. But now a team of Chinese researchers has found the solution.

    Kezheng Chen and Ji Ma from Quingdou University of Science and Technology in China have published a method of producing superparamagnetic crystals that are much larger than any that have been made before. They recently published their findings in Physics Letters A.

    If some magnetic materials, such as iron oxides, are small enough - perhaps a few millionths of a millimeter across, smaller than most viruses - they have an unusual property: their magnetization randomly flips as the temperature changes.

    By applying a magnetic field to these crystals, scientists can make them almost as strongly magnetic as ordinary fridge magnets. It might seem odd, but this phenomenon - known as superparamagnetism - is the strongest type of magnetism known.

    In theory, superparamagnetic particles could be ideal for drug delivery, as they can be directed to a tumor simply by using a magnetic field. Their tiny size, however, has made them difficult to guide precisely - until now.

    "The largest superparamagnetic materials that we have been able to make before now were clusters of nanocrystals that were together about a thousand times smaller than these," commented Dr. Chen[/B].

    "These larger crystals are easier to control using external magnetic fields, and they will not aggregate when those fields are removed, which will make them much more useful in practical applications, including drug delivery."

    According to the researchers, the high temperature and pressure under which the crystals form causes tiny meteorite-like ‘micro-particles' of magnetite to escape from their surface. This causes an unusual pock-marked appearance of the crystal surfaces and induces a high degree of stress and strain into the lattice of the growing crystals.

    Crystals that grow under such high stresses and strains form with irregularities and defects in their crystal lattice, and it is these irregularities that are responsible for the unusual magnetic properties of Chen's crystals.

    Magnetite crystals of a similar size that are grown at a lower temperature and under normal pressure are only very weakly magnetic.

    This method of making larger superparamagnetic crystals paves the way for the development of superparamagnetic bulk materials that can be reliably controlled by moderate external magnetic forces, revolutionizing drug delivery to tumors and other sites in the body that need to be targeted precisely.

    Chen also believes his crystals might also be useful in the many engineering projects that need "smart fluids" that change their properties when a magnetic field is applied. These can already be used to make vehicle suspension systems that automatically adjust as road conditions change, increasing comfort and safety, and to build more comfortable and realistic prosthetic limbs.

    Now that superparamagnetism is no longer restricted to minute particles that are difficult to handle, researchers can start exploring in which ways this can contribute to improving our lives.

    Based on
    material provided by Elsevier. The article "Discovery of superparamagnetism in sub-millimeter-sized magnetite porous single crystals," by Ji Ma and Kezheng Chen (doi:10.1016/j.physleta.2016.07.065) appears in Physics Letters A, volume 380, issue 41 (2016), published by Elsevier.


    Steam Register - The Raw Story/Nov. 15, 2016
    http://www.rawstory.com/2016/11/microscopic-super-magnets-are-the-future-of-drug-delivery/
    Photos: 1-shutterstock, Scicasts
    Newshawk Crew

    About Author

    Beenthere2Hippie
    BT2H is a retired news editor and writer from the NYC area who, for health reasons, retired to a southern US state early, and where BT2H continues to write and to post drug-related news to DF.

Comments

To make a comment simply sign up and become a member!