Opioid receptor agonistic characteristics of mitragynine pseudoindoxyl in comparison with mitragynine derived from Thai medicinal plant *Mitragyna speciosa*

Leonardo T. Yamamoto a, Syunji Horie a, Hiromitsu Takayama b, Norio Aimi b, Shin-ichiro Sakai b, Shingo Yano c, Jie Shan d, Peter K. T. Pang d, Dhavadee Ponglux e, Kazuo Watanabe a,*

a Laboratory of Chemical Pharmacology, Faculty of Pharmaceutical Sciences, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan

b Laboratory of Molecular Structure and Biological Function, Faculty of Pharmaceutical Sciences, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan

c Department of Molecular Pharmacology and Pharmacotherapeutics, Faculty of Pharmaceutical Sciences, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan

d Department of Physiology, School of Medicine, University of Alberta, Edmonton T6G 2H7, Canada

e Department of Pharmacognosy, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand

Manuscript received June 30, 1998; accepted manuscript October 6, 1998

Abstract

We have previously elucidated the opiate-like action of mitragynine, an active principle isolated from the Thai medicinal plant *Mitragyna speciosa*. In the present study, effects of the related compound, mitragynine pseudoindoxyl on electrically stimulated contraction in guinea pig ileum and mouse vas deferens, and on its binding affinity in the guinea pig brain membranes were studied. Mitragynine pseudoindoxyl inhibited the electrically stimulated ileum and mouse vas deferens contractions in a concentration-dependent manner. In the ileum, the effective concentration is in an nM order, being nearly equivalent to reported concentrations of the μ-opioid receptor agonist [D-Ala², Met-Phe⁴, Gly-ol⁵] enkephalin (DAMGO), and is 100- and 20-fold smaller than those of mitragynine and morphine, respectively. In the vas deferens, it is 35-fold smaller than that of morphine. The inhibitory action of mitragynine pseudoindoxyl in the ileum was antagonized by the non-selective opioid receptor antagonist naloxone and the μ-receptor antagonist naloxonazine. It was also antagonized by the δ-receptor antagonist naltrindole in the vas deferens. Mitragynine pseudoindoxyl showed a similar binding affinity to DAMGO and naltrindole at μ- and δ-receptors, respectively. However, the affinity at κ-receptors was negligible. The present study demonstrates that mitragynine pseudoindoxyl, a novel alkaloid structurally different from other opioid agonists, acts on opioid receptors, leading to a potent inhibition of electrically stimulated contraction in the ileum through the μ-receptors and in mouse vas deferens through δ-receptors. © 1999 Elsevier Science Inc. All rights reserved.

Keywords: Guinea pig ileum; Mitragynine; Mitragynine pseudoindoxyl; Morphine; Mouse vas deferens; Opioid receptor

Mitragynine pseudoindoxyl is an alkaloid synthesized from mitragynine, which is the principal indole alkaloid isolated from the leaves of Thai folk medicine *Mitragyna speciosa* Korth (*kratom* in Thai language). The leaf of kratom had been used in Thailand because of its opium-like action (Burkill, 1935), and for its coca-like stimulant action for combating fatigue or enhancing tolerance to hard work under a scorching sun (Grewal, 1932; Suwanlert, 1975). Additionally, it had been used to treat diarrhea and to replace morphine in treating addicts (Suwanlert, 1975; Jansen and Prast, 1988).

We have so far studied the pharmacological characteristics of indole alkaloids such as hirsutine (Yano et al., 1991; Horie et al., 1992) and yohimbine (Watanabe et al., 1987; Horiuchi et al., 1988; Ito et al., 1990) with various smooth muscle preparations. In the course of these studies, we found that mitragynine inhibits electrically elicited guinea pig ileum contraction through the opioid receptors, and that mitragynine inhibits morphine withdrawal response in the ileum (Watanabe et al., 1997).
Some pharmacological investigations with mitragynine in the in vivo experiments have shown that mitragynine exerts antinociceptive actions in rodents (Macko et al., 1972; Watanabe et al., 1992; Matsumoto et al., 1996a, 1996b) and antitussive action in dogs (Macko et al., 1972). Mitragynine is comparable with codeine as an analgesic and an antitussive drug. It has been clarified that mitragynine shows antinociceptive action through the opioid receptors, and that the action is dominantly mediated by \(\mu \)- and \(\delta \)-receptor subtypes (Matsumoto et al., 1996a; Tohda et al., 1997; Thongpradichote et al., 1998).

Zarembo et al. (1974) subjected mitragynine to biotransformation by the fungus *Helminthosporum* sp. and isolated mitragynine pseudoindoxyl as a metabolite (Fig. 1). Although no concrete pharmacological data about mitragynine pseudoindoxyl is available, its antinociceptive potency is described to be 10-fold greater than that of mitragynine (Zarembo et al., 1974).

In the present study, we attempted to elucidate the involvement of opioid receptors in its putative analgesic effect in the in vitro experiments. We studied the effect of mitragynine pseudoindoxyl on electrically elicited contraction of the guinea pig ileum and mouse vas deferens. The former preparation predominantly contains functional \(\mu \)- and \(\kappa \)- (Lord et al., 1977; Chavkin and Goldstein, 1981), and the latter preparation contains \(\delta \)-receptor population (Lord et al., 1977), respectively. In addition, we studied binding affinity and selectivity of mitragynine pseudoindoxyl for specific opioid receptors such as \(\mu \)-, \(\delta \)-, and \(\kappa \)-receptors.

1. Materials and methods

Male, albino Dunkin-Hartley guinea pigs (300–400 g) purchased from Takasugi Lab. Animals Co. Ltd. (Saitama, Japan) and male ddY mice (30–37 g) from Japan SLC Inc. (Shizuoka, Japan) were used. The segments of guinea pig ileum were removed in Krebs-Henseleit solution (Cox and Weinstock, 1966). A whole brain (excluding cerebellum) was quickly removed and placed in ice-cold 50 mM Tris HCl buffers, pH 7.4 at 25°C, weighed, and immediately frozen in dry ice containing acetone. Frozen brains were stored at −70°C until the assay. Mouse vas deferens was removed and placed in the modified Krebs-Henseleit solution. The nutrient solution was prepared by eliminating \(\text{MgSO}_4 \) from the Krebs-Henseleit solution (Cohen et al., 1994).

1.1. Isolated tissue preparations

Male guinea pigs were stunned by a blow on the head and exsanguinated. The ileum was removed and placed in Krebs-Henseleit solution (mM): \(\text{NaCl}, 112.08; \text{KCl}, 5.90; \text{CaCl}_2, 1.97; \text{MgCl}_2, 1.18; \text{NaH}_2\text{PO}_4, 1.22; \text{NaHCO}_3, 25.00; \) and glucose, 11.49. The ileum was set up under 1 g tension in a 5-ml organ bath containing the nutrient solution. The bath was maintained at 37°C and continuously bubbled with a gas mixture of 95% \(\text{O}_2 \) and 5% \(\text{CO}_2 \).

Male mice were sacrificed by cervical dislocation. Tissues were dissected free of connective tissue and suspended in modified Krebs-Henseleit solution. The nutrient solution was prepared by eliminating \(\text{MgSO}_4 \) from the Krebs-Henseleit solution. Segments of the vas deferens were set up longitudinally in a 5-ml organ bath containing the nutrient solution. The bath was maintained at 37°C and continuously bubbled with a gas mixture of 95% \(\text{O}_2 \) and 5% \(\text{CO}_2 \).

Tissues were stimulated by platinum needle-ring (a ring was placed 20 mm above the base of the needle 5 mm in length) electrodes using square wave pulses of supra maximal voltage. The ileum was transmurally stimulated (Cox and Weinstock, 1966) with monophasic pulses (0.2 Hz) and 0.1 ms duration; and vas deferens was transmurally stimulated with train of 10 pulses (10 Hz), 1.5 ms duration every 30 sec by a stimulator (SEN-7203, Nihon Kohden, Tokyo, Japan). Contractions were isotonically and isometrically recorded in the ileum and in the vas deferens, respectively, by using a displacement transducer (NEC, San-ei Instruments Ltd., Type 45347, Tokyo, Japan).

Concentration–response curves for the inhibition of electrically elicited contractions were constructed in a cumulative manner. \(pD_2 \) and \(pA_2 \) values were determined as previously described (Watanabe et al., 1997).

Antagonistic action of naloxonazine on inhibition of the twitch contraction by mitragynine pseudoindoxyl (100 nM), mitragynine (3 \(\mu \)M) or morphine (3 \(\mu \)M) were determined as reversal (%) by the following equation: Reversal (%) = (Naloxonazine)/(Agonist) \(\times 100; \) (Naloxonazine) means the restoration of the twitch contraction by naloxonazine in mm; (Agonist) means the inhibition of the twitch contraction elicited by agonists in mm. Moreover, the specificity of naloxone action on opioid receptors in the ileum was evaluated by studying the effect of naloxone on inhibition of twitch

Fig. 1. Chemical structures of mitragynine and mitragynine pseudoin- doxyl.
contraction induced by clonidine (100 nM) and nica-
dipine (100 nM).

1.2. Receptor binding assay

For each experiment, frozen brains from two animals
were thawed and homogenized with a homogenizer
(Kinematica GmbH LITTAU, Polytron, PT 10-35,
Switzerland) for 60 sec in 40 vol of 50 mM Tris HCl (pH
7.4) centrifuged at 49,000 g for 10 min (Pasternak
and Snyder, 1975; Childers et al., 1979). The pellet was
re-homogenized and centrifuged again. For the binding
assays, membrane fractions were suspended in assay
buffer at a protein concentration of 50 mg/ml. Protein
was measured by the method of Gorni
ci et al. (1949).

Saturation binding isotherms were produced by incubating
each labeled compound at nine or ten different
concentrations (10 pM–2 nM) with 2 mg of membrane
protein. To start the reaction, 0.1 ml aliquots of protein
were added to 0.9 ml of 50 mM Tris-HCl (pH 7.4) assay
buffer containing 1 nM of [3H]DAMGO, [3H]DPDPE, or
[U-69593 and appropriate concentrations of compet-
ing unlabeled ligands in a total volume of 1 ml. The incu-
bated periods were 1.5, 2, and 1 hr for [3H]DAMGO,
[3H]DPDPE, and [3H]U-69593, respectively at 25°C.
The reaction was terminated by rapid filtration under
reduced pressure through glass fiber filters (Whatman
GF/B, presoaked in Tris-HCl buffer) followed by the
addition of 4 ml ice-cold Tris-HCl buffer. Filters were
further washed with 4 ml ice-cold buffer and left to dry
for 12 hr. Radioactivity bound to the filters was quanti-
tated by liquid scintillation spectrometry (ALOKA
LSC-
5100, Japan). Nonspecific binding for [3H]DAMGO,
[3H]DPDPE, and [3H]U-69593 was determined in the
presence of 1 μM unlabeled DAMGO, naltrindole, and
U-69593, respectively. All values were presented as the
mean ± SEM.

The apparent dissociation constant (Kd) and maxi-
mum binding site density (Bmax) for radioligands were
estimated by Scatchard analysis of the saturation data
over a concentration range of 10 pM to 2 nM. The abil-
ity of unlabeled drugs to inhibit specific radioligand
binding was expressed as the IC50 value, which was the
molar concentration of unlabeled drug necessary to dis-
place 50% of the specific binding. Competitive inhibi-
tion studies were carried out in the presence of six
to nine different inhibitor concentrations.

1.3. Data analysis

Results are expressed as a mean ± SEM. The differ-
ence between the means of two groups was estimated
by Student’s t-test.

1.4. Drugs

Chemicals were obtained from the following sources:
acetylcholine chloride (Dai-ichi Pharmaceutical Co.,
Ltd., Tokyo, Japan), clonidine hydrochloride, yohim-
bine hydrochloride, hexamethonium dichloride (Wako
Pure Chemical Industries, Osaka, Japan), tetrodo
toxin (Sankyo, Tokyo, Japan), atropine sulfate (Nacalai
tesque Inc., Tokyo, Japan), [D-Ala2, Met-Phe4, Gly-ol5] enkephalin (DAMGO), naltrindole hydrochloride,
U-69593, naloxone hydrochloride, (Sigma Chemical Co.,
St. Louis, MO), naloxonazine hydrochloride (BIOMOL
Res. Labs., Inc., Plymouth Meeting, PA), [D-Pen2,5] en-
kephalin (DPDPE) (BACHEM Feinchemikalien, Swit-
zeland), morphine hydrochloride (Takeda Chemical
Industries, Japan), [3H]DAMGO, [3H]DPDPE, [3H]U-
69593 (Du Pont NEN Life Sci. Prods, Boston, MA), ni-
cardipine hydrochloride kindly given by Yamanouchi
Pharmaceutical Co., Ltd. (Tokyo, Japan). Mitragynine
was isolated from extract of leaves of M. speciosa and
mitragynine pseudoino
doxyl was synthesized as de-
scribed previously (Ponglux et al., 1994; Takayama
et al., 1996). Mitragynine and mitragynine pseudoinoxyl
were at first dissolved in 50% and 75% dimethyl sulfo-
ride, respectively, to yield 1 mM solution, and then sub-
sequent dilution of both compounds were made with
distilled water or 50 mM Tris HCl for bioassay and
binding assay, respectively. Other drugs were dissolved
in distilled water.

2. Results

2.1. Effect of mitragynine pseudoino
doxyl on electrical stimulation-induced contraction

The inhibitory effect of mitragynine pseudoinoxyl
on contraction evoked by single pulse electrical stimula-
tion in the guinea pig ileum is shown in Fig. 2. The mean
amplitude of electrical contraction was about 20% of
the maximal response to acetylcholine (3 μM). The sol-
vent (dimethyl sulfoxide 0.1%) used in the experiment
did not affect the contraction (0.3 ± 1.6% inhibition, n = 3).

Mitragynine pseudoino
doxyl inhibited the electrically
stimulated ileum contraction in a concentration-
dependent manner as did mitragynine and morphine (Fig. 3)
and their pD2 values were 8.96 ± 0.09, 6.92 ± 0.05,
and 7.67 ± 0.06, respectively (Table 1)(see Arunlakshana
and Schild, 1959). Mitragynine pseudoino
doxyl potency
was about 100- and 20-fold greater than that of mitra-
gynine and morphine, respectively. On the other hand,
mitragynine pseudoinoxyl (3 μM) did not affect the
concentration–response curve for acetylcholine in the
ileum (data not shown). Moreover, the electrically stim-
ulated ileum contraction was abolished by tetrodotoxin
(1 μM) and atropine (100 nM) (data not shown). How-
ever, hexamethonium (100 μM) did not affect the con-
traction (6 ± 3% inhibition, n = 4).

2.2. Reversal effect of naloxone and naloxonazine on
mitragynine and mitragynine pseudoino
doxyl decreased neurogenic twitch contraction

To investigate the involvement of opioid receptors in
the inhibitory effect of mitragynine pseudoino
doxyl, the
reversal effects of the non-selective opioid receptor antagonist naloxone and the μ-receptor antagonist naloxonazine on the decreased contraction were examined. Mitragynine pseudoindoxyl (30 nM) displayed a 77 ± 3% inhibition of the electrically stimulated ileum contraction 20 min after drug administration and this response was similar to that of morphine (1 μM, 81 ± 5% inhibition). Naloxonazine (10–300 nM; Fig. 4) reversed the inhibitory effect of mitragynine pseudoindoxyl (100 nM) in a concentration-dependent manner. The similar observation was obtained by the addition of naloxone (Fig. 2). Naloxone and naloxonazine also restored the inhibition by morphine and mitragynine (Watanabe et al., 1997). On the other hand, naloxone (0.3 μM) did not show any effect on the inhibition by clonidine, an α2-adrenoceptor agonist, or nicardipine, an L-type Ca2+ channel antagonist. Yohimbine, an α2 antagonist, reversed the inhibition elicited by clonidine (data not shown). Naloxone (100 nM) increased the electrically stimulated ileum contraction (50 ± 7%, n = 5), but naloxonazine (3 μM) itself had no effect on the contraction (6 ± 5% contraction, n = 3). This means that endogenous opioid substances inhibit the electrically stimulated contraction through opioid receptors except μ-receptors.

Exposure of the ileum to naloxone (3–30 nM) shifted the concentration–response curves for mitragynine pseudoindoxyl to the right in a competitive manner. The pA2 values of naloxone were 8.73 ± 0.15 for mitragynine pseudoindoxyl, 8.77 ± 0.12 for mitragynine, and 8.61 ± 0.15 for morphine, the differences being statistically insignificant. The slope factors were not significantly different from a unity (Table 1).

Fig. 5 shows that mitragynine pseudoindoxyl inhibited the electrically elicited mouse vas deferens contractions in a dose-dependent manner, as did [D-Pen2,5]-enkephalin (DPDPE), a δ-opioid receptor selective agonist (Mosberg et al., 1987) and morphine, a μ-agonist.

The concentration–response curves for mitragynine pseudoindoxyl were shifted to the right in the presence of naltrindole (1–3 nM), a δ-opioid receptor selective antagonist (Portoghese et al., 1988), giving an apparent pA2 value of 9.93 ± 0.20. This value was similar to that for DPDPE (Table 2).

Table 1

<table>
<thead>
<tr>
<th>Agonist</th>
<th>pD2</th>
<th>pA2</th>
<th>Slope</th>
</tr>
</thead>
<tbody>
<tr>
<td>MGP</td>
<td>8.96 ± 0.09</td>
<td>8.73 ± 0.15</td>
<td>0.82 ± 0.13</td>
</tr>
<tr>
<td>MG</td>
<td>6.92 ± 0.05</td>
<td>8.77 ± 0.12</td>
<td>0.93 ± 0.13</td>
</tr>
<tr>
<td>Morphine</td>
<td>7.67 ± 0.06</td>
<td>8.61 ± 0.15</td>
<td>1.14 ± 0.20</td>
</tr>
</tbody>
</table>

pD2 values are the negative logarithm of the IC50 values. The pA2 values were calculated from parallel shifts of the curves for the agonists MG, MGP, and morphine by the method of Arunlakshana and Schild (1959). Slope: slope of the Schild plot. Each value represents the mean ± SEM, n = 4–5.
Table 2

<table>
<thead>
<tr>
<th>Agonist</th>
<th>pD2</th>
<th>pA2 (naltrindole)</th>
<th>pA2 (naloxone)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MGP</td>
<td>7.40 ± 0.11</td>
<td>9.93 ± 0.20</td>
<td>7.02 ± 0.42</td>
</tr>
<tr>
<td>MG</td>
<td>4.57 ± 0.14</td>
<td><6</td>
<td><6</td>
</tr>
<tr>
<td>DPDPE</td>
<td>8.53 ± 0.16</td>
<td>9.48 ± 0.16</td>
<td>7.19 ± 0.11</td>
</tr>
<tr>
<td>Morphine</td>
<td>5.85 ± 0.08</td>
<td>7.74 ± 0.20</td>
<td>8.14 ± 0.15</td>
</tr>
</tbody>
</table>

pD2 values are the negative logarithm of the IC50 values. The pA2 values were calculated from parallel shifts of the curves for the agonists MGP, DPDPE, and morphine by the method of Arunlakshana and Schild (1959). Each value represents the mean ± SEM, n = 4–6.

was not affected by the above antagonists, even at a high dose of 1 μM (Table 2).

2.3. Effect of mitragynine pseudoindoxyl on opioid-receptor binding in brain homogenate

The effects of mitragynine pseudoindoxyl on three types of opioid receptors were determined by evaluating the inhibition of binding of specific ligands at μ-, δ-, and κ-opioid receptors in the guinea pig brain membranes. Specific bindings of these radioligands for the specific opioid receptors were saturable and Scatchard plots were linear. The Kd values of [3H]DAMGO, [3H]DPDPE, and [3H]U-69593 were 0.44 ± 0.04 nM, 0.83 ± 0.05 nM, and 0.69 ± 0.10 nM, respectively. Further, their Bmax values were 2.90 ± 0.59 fmol/mg protein, 2.24 ± 0.21 fmol/mg protein, and 5.08 ± 0.51 fmol/mg protein, respectively.

Table 3 shows a close similarity of pIC50 values of mitragynine pseudoindoxyl at μ-site to DAMGO. The order of potency of the unlabeled drugs for displacing [3H]DAMGO was: mitragynine pseudoindoxyl > DAMGO > morphine. Mitragynine pseudoindoxyl displayed 4- and 40-fold greater potency than DAMGO and morphine, respectively.

At δ-opioid receptors, mitragynine pseudoindoxyl showed a similar potency to naltrindole in displacing [3H]DPDPE binding. On the other hand, morphine displayed a similar pIC50 value to DAMGO. The order of potency of the unlabeled drugs for displacing [3H]DPDPE was: naltrindole > mitragynine pseudoindoxyl > DAMGO > morphine.

All of the compounds examined for their affinity for μ-receptor displayed a relatively lower affinity than U-69593, a selective μ-receptor agonist (Lahti et al., 1985). The order of potency of the unlabeled drugs for displacing [3H]U-69593 was: U-69593 > mitragynine pseudoindoxyl > morphine > DAMGO.

Mitragynine pseudoindoxyl showed a higher affinity for μ- and δ-receptors. On the other hand, morphine and DAMGO showed a high selectivity for μ-receptors over δ- and κ-receptors (Table 3).
Table 3
pIC\(_50\) values of mitragynine pseudoindoxyl (MGP), morphine, [D-Ala\(^2\), Met-Phe\(^4\), Gly-ol\(^5\)] enkephalin (DAMGO), naltrindole, and U-69593 in displacing radioligands specific for opioid receptor types in guinea pig brain homogenates

<table>
<thead>
<tr>
<th></th>
<th>[(\text{H})]DAMGO ((\mu)-sites)</th>
<th>[(\text{H})]DPDPE ((\delta)-sites)</th>
<th>[(\text{H})]U-69593 ((\kappa)-sites)</th>
<th>(\mu/\delta)</th>
<th>(\mu/\kappa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MGP</td>
<td>9.55 ± 0.39 (4)</td>
<td>8.18 ± 0.22 (5)</td>
<td>6.88 ± 0.32 (4)</td>
<td>23</td>
<td>467</td>
</tr>
<tr>
<td>Morphine</td>
<td>7.94 ± 0.29 (4)</td>
<td>6.04 ± 0.13 (5)</td>
<td>6.16 ± 0.17 (4)</td>
<td>80</td>
<td>60</td>
</tr>
<tr>
<td>DAMGO</td>
<td>8.90 ± 0.14 (5)</td>
<td>6.37 ± 0.26 (3)</td>
<td>4.87 (2)</td>
<td>339</td>
<td>10715</td>
</tr>
<tr>
<td>Naltrindole</td>
<td>ND</td>
<td>8.77 ± 0.20 (4)</td>
<td>ND</td>
<td></td>
<td></td>
</tr>
<tr>
<td>U-69593</td>
<td>ND</td>
<td>ND</td>
<td>8.32 ± 0.10 (4)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The pIC\(_50\) is the molar concentration of unlabeled drug necessary to displace 50% of the specific binding. pIC\(_50\), negative logarithm of the IC\(_50\) value. Selectivity was calculated from the equations: \(\mu/\delta = I_{C50} (\delta)/I_{C50} (\mu)\); and \(\mu/\kappa = I_{C50} (\kappa)/I_{C50} (\mu)\); ND.: not determined. Values are mean ± SEM. The numbers in parentheses are the number of separate experiments.

3. Discussion

The electrically stimulated ileal preparation from guinea pig and vas deferens from mouse, and receptor binding assay with guinea pig brain homogenates were used to study the mode of action of mitragynine pseudoindoxyl in their putative strong analgesic effects in mice.

At first, we studied the effect of mitragynine pseudoindoxyl on electrical stimulation-induced contraction in guinea pig ileum. The contraction was abolished by tetradotoxin and atropine, but not by hexamethonium. Therefore, the ileum contraction was elicited by acetylcholine released from post-ganglionic cholinergic neurones. Mitragynine pseudoindoxyl inhibited the electrically stimulated ileum contraction in a concentration-dependent manner as did morphine and mitragynine. On the other hand, mitragynine pseudoindoxyl did not affect the contraction induced by direct stimulation of muscarinic receptors on the intestinal smooth muscle. Together, it suggests that mitragynine pseudoindoxyl acts on the post-ganglionic nerves to inhibit the release of neurotransmitters.

The inhibition of the electrically stimulated ileum contraction by mitragynine pseudoindoxyl was antagonized by naloxone and naloxonazine, suggesting the involvement of opioid receptors. This is confirmed by the parallel shift of concentration–response curve for mitragynine pseudoindoxyl by naloxone. No significant difference among the pA\(_2\) values for naloxone against mitragynine pseudoindoxyl, mitragynine, and morphine was observed. Their Schild slopes were not significantly different from a unity. In addition, naloxone abolished the inhibitory effect of morphine on the electrically stimulated contraction in the ileum, but did not show any effect on inhibition by clonidine and nicardipine. The effect of naloxone is specific to the opioid receptors. Taken together, mitragynine pseudoindoxyl is thought to act on opioid receptors.

It is well established that opioid receptors in peripheral tissues and in the central nervous system can be classified into at least three different types, namely \(\mu\)-, \(\delta\)-, and \(\kappa\)-receptors (Goldstein and James, 1984; Martin, 1984; Dhawan et al., 1996). The guinea pig ileum contains functional populations of both \(\mu\)- and \(\kappa\)-receptors (Hutchinson, et al., 1975; Chavkin and Goldstein, 1981; Traynor, 1994). Although the enteric nervous system of the ileum contains a number of opioid receptors, the actions of \(\mu\)-agonist such as morphine is thought to be mediated through \(\mu\)-receptors, a subtype of \(\mu\)-class of opioid receptors (Goldstein and James, 1984; Martin, 1984; Dhawan et al., 1996). Naloxonazine is an irreversible opioid antagonist for \(\mu\)-receptors, however it is known that naloxonazine also antagonizes the opioid effect in the guinea pig ileum in a reversible manner by acting on \(\mu\)-receptors (Gintzler and Pasternak, 1983; Pasternak and Wood, 1986). Taking into account that naloxonazine alone had no effect on the contraction elicited by electrical stimulation in the ileum, and that naloxonazine antagonized the effects of mitragynine and mitragynine pseudoindoxyl, mitragynine and mitragynine pseudoindoxyl are considered to act on \(\mu\)-receptors.

pD\(_2\) value for DAMGO at \(\mu\)-receptors is reported to be about 8.0 (Elliot and Traynor, 1995; Zadina et al., 1997). Mitragynine pseudoindoxyl showed to be as potent as DAMGO in functional experiments. These data are well correlated to results from binding assay, which demonstrated that mitragynine pseudoindoxyl has a similar affinity to DAMGO for \(\mu\)-binding site. Mitragynine pseudoindoxyl potency was about 100-fold greater than that of mitragynine. Oxidation at 7 position of mitragynine led to the increase of opioid activities. This may mean that the oxyindole structure or the indole ring perpendicular to C and D rings is important for the opioid activities of this class of compounds.

Mitragynine pseudoindoxyl inhibited vas deferens contraction in a concentration-dependent manner, as did DPDPE and morphine. A shift to the right of concentration–response curves for mitragynine pseudoindoxyl in the presence of naltrindole or naloxone was observed. Moreover, the pA\(_2\) values for naltrindole and
naloxone against mitragynine pseudoindoxyl were rather similar to those against DPDPE. These results suggest that mitragynine pseudoindoxyl interacts with δ-opioid receptors to inhibit the twitch response of mouse vas deferens preparation.

In contrast to the close similarity of the pA₂ values for naloxone against mitragynine pseudoindoxyl and morphine in the guinea pig ileum, their pA₂ values in the mouse vas deferens are quite different. However, approximately equal pA₂ values of naltrindole and naloxone against mitragynine pseudoindoxyl and DPDPE were observed in the mouse vas deferens. These observations demonstrate that mitragynine pseudoindoxyl acts preferentially on μ-receptors in the guinea pig ileum and on δ-receptors in the mouse vas deferens.

Mitragynine inhibited the vas deferens contraction only at high doses (>10 μM). Moreover, mitragynine pseudoindoxyl was sensitive to naltrindole and naloxone in mouse vas deferens, but the inhibitory effect of mitragynine is refractory to micromolar doses of naltrindole and naloxone. Taking into consideration that high doses of mitragynine show Ca²⁺ channel (L- and T-type) blocking action in neuroblastoma cells by patch clamp and fluorescent dye techniques (Horie et al., 1995), mechanisms other than opioid receptors may be involved in mitragynine action in this smooth muscle.

The receptor binding assay showed that affinities of mitragynine pseudoindoxyl at μ- and δ-receptors are similar to DAMGO and naltrindole, respectively. Because mitragynine did not display receptor preferences higher than 100-fold for μ- or δ-receptors (Yamamoto et al., 1997), the proposed criterion for opioid selectivity (Goldstein and James, 1984), it was suggested to be a non-selective ligand at these opioid receptors. Mitragynine pseudoindoxyl also showed no selectivity for either μ- or δ-receptors.

A good correlation between both functional and binding assays was observed with mitragynine pseudoindoxyl. Surprisingly, the potency ratio estimated by comparing the potency of mitragynine pseudoindoxyl in the ileal preparation with that of morphine showed that it coincided with that estimated in the binding assay. Although a detailed study on mitragynine pseudoindoxyl action on μ-receptors with selective antagonists was not carried out in the ileal experiments, restoration by naloxonazine of the inhibitory effect of mitragynine pseudoindoxyl on the ileum contraction and its binding affinity support its action on μ-receptors. The action of mitragynine pseudoindoxyl on δ-receptors in the mouse vas deferens was also supported in this binding assay. Mitragynine pseudoindoxyl potency was one or two orders of magnitude greater than that of morphine in both assays, nevertheless this compound is structurally unrelated to opioids. In addition, its low selectivity for μ- and δ-opioid receptors compared with morphine was also evident in both assays.

A close correlation between the pharmacological potency of opiates and their affinity for receptor binding has been established for a large number of opioid analgesic drugs (Pert and Snyder, 1973; Lord et al., 1977). Moreover, agonists with high affinity at both μ- and δ-receptors have the potential to attenuate acute and chronic pain (Lazarus et al., 1996). Although in vivo experiments are necessary to study analgesic effects of mitragynine pseudoindoxyl, the present results in part explain the antinociceptive property (Zarembo et al., 1974). In agreement with reported analgesic potency, mitragynine pseudoindoxyl also showed to be 100-fold more potent than mitragynine in inhibiting electrically stimulated ileum contraction. Hence, it raises the possibility of mitragynine pseudoindoxyl to be a potent opioid analgesic drug.

In summary, the present study is, to our knowledge, the first demonstration that mitragynine pseudoindoxyl, a novel alkaloid structurally different from other opioid agonists, acts on opioid receptors, leading to a potent inhibition of electrically stimulated contraction in guinea pig ileum and in mouse vas deferens. In addition, mitragynine pseudoindoxyl showed to be very potent μ- and δ-opioid agonists in both functional and binding assays.

4. Summary

Mitragynine pseudoindoxyl is a compound related to mitragynine, which is structurally unrelated to morphine and has opiate-like antinociceptive activity (Zarembo et al., 1974). Mitragynine is a main alkaloid isolated from leaves of M. speciosa, a Thai folk medicine with opiate-like medicinal use. Effects of mitragynine pseudoindoxyl on electrically stimulated contraction in guinea pig ileum and mouse vas deferens, and its binding affinity in the guinea pig brain membranes were studied in order to elucidate opioid effect of mitragynine pseudoindoxyl. Mitragynine pseudoindoxyl (100 pM–30 nM) inhibited the electrically stimulated ileum contraction in a concentration-dependent manner, and its pD₂ value was 8.96 ± 0.09. This potency was about 100- and 20-fold greater than that of mitragynine (pD₂ = 6.92 ± 0.05) and morphine (pD₂ = 7.67 ± 0.06), respectively. On the other hand, it had no effect on the contraction elicited by direct stimulation of the cholinergic receptors on the smooth muscle. Moreover, mitragynine pseudoindoxyl (1 nM–1 μM) also inhibited the electrically stimulated vas deferens contraction in a concentration-dependent manner and afforded a pD₂ value of 7.40 ± 0.11. This was 35-fold greater than that of morphine (pD₂ = 5.85 ± 0.08). The inhibitory effects of mitragynine pseudoindoxyl on electrically stimulated ileum and vas deferens contractions were completely reversed by naloxone and naltrindole, respectively. The pA₂ value of naloxone (8.73 ± 0.15) against mitragynine pseudoindoxyl is almost the same that against morphine.
References

