1. Dear Drugs-Forum readers: We are a small non-profit that runs one of the most read drug information & addiction help websites in the world. We serve over 4 million readers per month, and have costs like all popular websites: servers, hosting, licenses and software. To protect our independence we do not run ads. We take no government funds. We run on donations which average $25. If everyone reading this would donate $5 then this fund raiser would be done in an hour. If Drugs-Forum is useful to you, take one minute to keep it online another year by donating whatever you can today. Donations are currently not sufficient to pay our bills and keep the site up. Your help is most welcome. Thank you.
    PLEASE HELP

Analytical characterization and comparison of the blood–brain barrier permeability of eight opioid

Analytical characterization and comparison of the blood–brain barrier permeability of eight opioid

  1. Anonymous
    Peptides. 2010 Jul;31(7):1390-9. Epub 2010 Mar 27.
    Van Dorpe S, Adriaens A, Polis I, Peremans K, Van Bocxlaer J, De Spiegeleer B.

    Abstract

    Opioid drugs, including the newly developed peptides, should penetrate the blood-brain barrier (BBB) for pain management activity. Although BBB transport is fragmentarily described for some mu-opioid peptides, a complete and comparative overview is currently lacking. In this study, the BBB transport of eight opioid peptides (EM-1, EM-2, CTAP, CTOP, DAMGO, dermorphin, TAPP and TAPS) is described and compared. In addition, the metabolic stability in plasma and brain was evaluated. The highest influx rate was obtained for dermorphin (K(in)=2.18 microl/(g x min)), followed by smaller rates for EM-1, EM-2 and TAPP (K(in)=1.06-1.14 microl/(g x min)). Negligible influx was observed for DAMGO, CTOP and TAPS (K(in)=0.18-0.40 microl/(g x min)) and no influx for CTAP. Capillary depletion revealed that all peptides reached brain parenchyma for over 75%. Efflux was shown for TAPP (t(1/2)=2.82 min) and to a lesser extent for EM-1, EM-2 and DAMGO (t(1/2)=10.66-21.98 min), while no significant efflux was observed for the other peptides. All peptides were stable in mouse plasma and brain, with generally higher stability in brain, except for EM-1 and EM-2 which showed plasma half-life stabilities of a few minutes only.