1. Dear Drugs-Forum readers: We are a small non-profit that runs one of the most read drug information & addiction help websites in the world. We serve over 4 million readers per month, and have costs like all popular websites: servers, hosting, licenses and software. To protect our independence we do not run ads. We take no government funds. We run on donations which average $25. If everyone reading this would donate $5 then this fund raiser would be done in an hour. If Drugs-Forum is useful to you, take one minute to keep it online another year by donating whatever you can today. Donations are currently not sufficient to pay our bills and keep the site up. Your help is most welcome. Thank you.
    PLEASE HELP

Brain cannabinoid CB2 receptors modulate cocaine's actions in mice

Brain cannabinoid CB2 receptors modulate cocaine's actions in mice

  1. chaos69
    Brain cannabinoid CB(2) receptors modulate cocaine's actions in mice.

    Xi ZX, Peng XQ, Li X, Song R, Zhang HY, Liu QR, Yang HJ, Bi GH, Li J, Gardner EL.

    Intramural Research Program, National Institute on Drug Abuse, Baltimore, Maryland, USA.

    Nat Neurosci. 2011 Jul 24. doi: 10.1038/nn.2874. [Epub ahead of print]

    Abstract

    The presence and function of cannabinoid CB(2) receptors in the brain have been the subjects of much debate. We found that systemic, intranasal or intra-accumbens local administration of JWH133, a selective CB(2) receptor agonist, dose-dependently inhibited intravenous cocaine self-administration, cocaine-enhanced locomotion, and cocaine-enhanced accumbens extracellular dopamine in wild-type and CB(1) receptor knockout (CB(1)(-/-), also known as Cnr1(-/-)) mice, but not in CB(2)(-/-) (Cnr2(-/-)) mice. This inhibition was mimicked by GW405833, another CB(2) receptor agonist with a different chemical structure, and was blocked by AM630, a selective CB(2) receptor antagonist. Intra-accumbens administration of JWH133 alone dose-dependently decreased, whereas intra-accumbens administration of AM630 elevated, extracellular dopamine and locomotion in wild-type and CB(1)(-/-) mice, but not in CB(2)(-/-) mice. Intra-accumbens administration of AM630 also blocked the reduction in cocaine self-administration and extracellular dopamine produced by systemic administration of JWH133. These findings suggest that brain CB(2) receptors modulate cocaine's rewarding and locomotor-stimulating effects, likely by a dopamine-dependent mechanism.