1. Dear Drugs-Forum readers: We are a small non-profit that runs one of the most read drug information & addiction help websites in the world. We serve over 4 million readers per month, and have costs like all popular websites: servers, hosting, licenses and software. To protect our independence we do not run ads. We take no government funds. We run on donations which average $25. If everyone reading this would donate $5 then this fund raiser would be done in an hour. If Drugs-Forum is useful to you, take one minute to keep it online another year by donating whatever you can today. Donations are currently not sufficient to pay our bills and keep the site up. Your help is most welcome. Thank you.
    PLEASE HELP

Cannabinoid agonist WIN 55212-2 speeds up the cone response to light offset in goldfish retina

Cannabinoid agonist WIN 55212-2 speeds up the cone response to light offset in goldfish retina

  1. Shampoo
    Goldfish cones contain CB1 receptors at the synaptic terminal, selectively accumulate 3H-anandamide, and contain fatty acid amide hydrolase-immunoreactivity, and voltage-gated calcium and potassium currents are modulated by CB1 ligands (Yazulla et al., 2000; Fan & Yazulla, 2003; Glaser et al., 2005). These data suggest that a retinal mechanism may account for some of the psychophysical effects of cannabis. Here, we studied the effect of a cannabinoid agonist on cone light responses. Whole-cell patch-clamp recordings were made from cones in the isolated goldfish retina. Cones were stimulated with a spot of light of variable wavelength and intensities in combination with voltage-and current-clamp protocols. Pharmacological manipulation was performed using the cannabinoid agonist WIN 55212-2 (10 muM). WIN had no effect on the absolute sensitivity of the cones or on the kinetics of the onset response. However, the light-offset response became faster, and the depolarizing overshoot was enhanced. Time constant of the offset response was reduced from 292 +/- 28 ms to 180 +/- 11 ms (n = 6) (P < 0.01) in the presence of WIN. Acceleration of the offset response was not affected by flash length from 200 ms to 10 s. This was found under current-clamp as well as under voltage-clamp conditions, indicating that the effect of WIN was mediated directly or indirectly by modulation of the cGMP-gated channels in the outer segment of the cones. The effects of WIN were not blocked by the CB1 antagonist SR141716A. With a train of "dark" flashes from a steady background, the photocurrent recovered toward baseline more quickly with WIN than in Control. In summary, cannabinoids speed up the dynamics of the phototransduction deactivation cascade in the cone outer segments. The functional consequence of this effect is to shorten the recovery time to the offset of bright flashes, perhaps resulting in an increase in contrast sensitivity.

    Discussion Thread