1. Dear Drugs-Forum readers: We are a small non-profit that runs one of the most read drug information & addiction help websites in the world. We serve over 4 million readers per month, and have costs like all popular websites: servers, hosting, licenses and software. To protect our independence we do not run ads. We take no government funds. We run on donations which average $25. If everyone reading this would donate $5 then this fund raiser would be done in an hour. If Drugs-Forum is useful to you, take one minute to keep it online another year by donating whatever you can today. Donations are currently not sufficient to pay our bills and keep the site up. Your help is most welcome. Thank you.
    PLEASE HELP

Characterization of the interaction of zopiclone with gamma-aminobutyric acid type A receptors (2000

Characterization of the interaction of zopiclone with gamma-aminobutyric acid type A receptors (2000

  1. Jatelka
    Mol Pharmacol. 2000 Oct;58(4):756-62

    Davies, M ; Newell, J G ; Derry, J M ; Martin, I L ; Dunn, S M

    Zopiclone is a cyclopyrrolone that is used clinically as a hypnotic. Although this drug is known to interact with neuronal gamma-aminobutyric acid type A receptors, its binding site(s) within the receptor oligomer has been reported to be distinct from that of the classical benzodiazepines. After photoaffinity labeling with flunitrazepam, receptors in rat cerebellar membranes showed differentially reduced affinity for flunitrazepam and zopiclone by 50- and 3-fold, respectively. Because histidine 101 of the alpha-subunit is a major site of photolabeling, we have made specific substitutions of this residue and studied the consequences on the binding properties of zopiclone and diazepam using recombinant alpha1beta2gamma2-receptors transiently expressed in tsA201 cells. Both compounds showed similar binding profiles with receptors containing mutated alpha-subunits, suggesting a similar interaction with the residue at position 101. At alpha1beta2gamma3-receptors, flunitrazepam affinity was dramatically decreased by approximately 36-fold, whereas the affinity for zopiclone was decreased only 3-fold, suggesting a differential contribution of the gamma-subunit to the binding pocket. Additionally, we used electrophysiological techniques to examine the contribution of the gamma-subunit isoform in the receptor oligomer to ligand recognition using recombinant receptors expressed in Xenopus oocytes. Both compounds are agonists at alpha1beta2gamma2- and alpha1beta2gamma3-receptors, with flunitrazepam being more potent but less efficacious. In summary, these data suggest that histidine 101 of the alpha1-subunit plays a similar role in ligand recognition for zopiclone, diazepam, and flunitrazepam.
Tags: