1. Dear Drugs-Forum readers: We are a small non-profit that runs one of the most read drug information & addiction help websites in the world. We serve over 4 million readers per month, and have costs like all popular websites: servers, hosting, licenses and software. To protect our independence we do not run ads. We take no government funds. We run on donations which average $25. If everyone reading this would donate $5 then this fund raiser would be done in an hour. If Drugs-Forum is useful to you, take one minute to keep it online another year by donating whatever you can today. Donations are currently not sufficient to pay our bills and keep the site up. Your help is most welcome. Thank you.
    PLEASE HELP

Comparative effects of dextromethorphan and dextrorphan on nicotine discrimination in rats (2006)

Comparative effects of dextromethorphan and dextrorphan on nicotine discrimination in rats (2006)

  1. Paracelsus
    Wright MJ Jr, Vann RE, Gamage TF, Damaj MI, Wiley JL. Pharmacology, Biochemistry & Behavior 2006 Nov;85(3):507-13. Epub 2006 Nov 16.

    While the role of dextrorphan and dextromethorphan as N-methyl-d-aspartate (NMDA) receptor antagonists has received considerable research attention, their effects on nicotinic acetylcholine receptors (nAChR) has been less well characterized. Recent in vitro and in vivo research has suggested that these drugs noncompetitively block alpha3beta4*, alpha4beta2, and alpha7 nAChR subtypes and antagonize nicotine's antinociceptive and reinforcing effects. Both drugs were most potent at blocking alpha3beta4* AChR. This study investigated the effects of dextrorphan and dextromethorphan on nicotine's discriminative stimulus effects. Three groups of rats were trained in a two-lever drug discrimination procedure to discriminate 0.4 mg/kg s.c. nicotine from saline. Nicotine dose-dependently substituted for itself in all three groups. In contrast, when dextrorphan (group 1) or dextromethorphan (group 2) were injected i.p., neither substitution for nor antagonism of nicotine was observed for either drug. Since i.p. administration allows substantial metabolism of dextromethorphan to its parent compound dextrorphan, the two drugs were also tested following s.c. administration (group 3). Discrimination results were similar across both routes of administration, in that neither substitution nor antagonism occurred, however, s.c. administration reduced response rates to a much greater extent than did i.p. administration. Previous work suggests that beta2 subunits are crucial for mediation of nicotine's discriminative stimulus effects and may play a role in its reinforcing effects, albeit other research suggests a role for alpha3beta4* nicotinic receptors in the latter. Our results suggest that alpha3beta4* nicotinic receptors do not play a major role in nicotine's discriminative stimulus effects. Further, they suggest that the role of cholinergic mediation of the behavioral effects of dextrorphan and dextromethorphan related to the abuse properties of nicotine may be minimal.

    Discussion Thread