1. Dear Drugs-Forum readers: We are a small non-profit that runs one of the most read drug information & addiction help websites in the world. We serve over 4 million readers per month, and have costs like all popular websites: servers, hosting, licenses and software. To protect our independence we do not run ads. We take no government funds. We run on donations which average $25. If everyone reading this would donate $5 then this fund raiser would be done in an hour. If Drugs-Forum is useful to you, take one minute to keep it online another year by donating whatever you can today. Donations are currently not sufficient to pay our bills and keep the site up. Your help is most welcome. Thank you.
    PLEASE HELP

Contributions of Dopamine D1, D2, and D3 Receptor Subtypes to the Disruptive Effects of Cocaine on P

Contributions of Dopamine D1, D2, and D3 Receptor Subtypes to the Disruptive Effects of Cocaine on P

  1. Jatelka
    Neuropsychopharmacology e-published Dec 2007

    Doherty JM (http://www.ncbi.nlm.nih.gov/sites/e...l.Pubmed_DiscoveryPanel.Pubmed_RVAbstractPlus), Masten VL (http://www.ncbi.nlm.nih.gov/sites/e...l.Pubmed_DiscoveryPanel.Pubmed_RVAbstractPlus), Powell SB (http://www.ncbi.nlm.nih.gov/sites/e...l.Pubmed_DiscoveryPanel.Pubmed_RVAbstractPlus), Ralph RJ (http://www.ncbi.nlm.nih.gov/sites/e...l.Pubmed_DiscoveryPanel.Pubmed_RVAbstractPlus), Klamer D (http://www.ncbi.nlm.nih.gov/sites/e...l.Pubmed_DiscoveryPanel.Pubmed_RVAbstractPlus), Low MJ (http://www.ncbi.nlm.nih.gov/sites/e...l.Pubmed_DiscoveryPanel.Pubmed_RVAbstractPlus), Geyer MA (http://www.ncbi.nlm.nih.gov/sites/e...l.Pubmed_DiscoveryPanel.Pubmed_RVAbstractPlus).

    Deficits in prepulse inhibition (PPI) of startle, an operational measure of sensorimotor gating, are characteristics of schizophrenia and related neuropsychiatric disorders. Previous studies in mice demonstrate a contribution of dopamine (DA) D(1)-family receptors in modulating PPI and DA D(2) receptors (D2R) in mediating the PPI-disruptive effects of amphetamine. To examine further the contributions of DA receptor subtypes in PPI, we used a combined pharmacological and genetic approach. In congenic C57BL/6 J wild-type mice, we tested whether the D1R antagonist SCH23390 or the D2/3R antagonist raclopride would attenuate the effects of the indirect DA agonist cocaine (40 mg/kg). Both the D1R and D2/3R antagonists attenuated the cocaine-induced PPI deficit. We also tested the effect of cocaine on PPI in wild-type and DA D1R, D2R, or D3R knockout mice. The cocaine-induced PPI deficit was influenced differently by the three DA receptor subtypes, being absent in D1R knockout mice, partially attenuated in D2R knockout mice, and exaggerated in D3R knockout mice. Thus, the D1R is necessary for the PPI-disruptive effects of cocaine, while the D2R partially contributes to these effects. Conversely, the D3R appears to inhibit the PPI-disruptive effects of cocaine. Uncovering neural mechanisms involved in PPI will further our understanding of substrates of sensorimotor gating and could lead to better therapeutics to treat complex cognitive disorders such as schizophrenia

    Discussion Thread