1. Dear Drugs-Forum readers: We are a small non-profit that runs one of the most read drug information & addiction help websites in the world. We serve over 4 million readers per month, and have costs like all popular websites: servers, hosting, licenses and software. To protect our independence we do not run ads. We take no government funds. We run on donations which average $25. If everyone reading this would donate $5 then this fund raiser would be done in an hour. If Drugs-Forum is useful to you, take one minute to keep it online another year by donating whatever you can today. Donations are currently not sufficient to pay our bills and keep the site up. Your help is most welcome. Thank you.
    PLEASE HELP

Differential contribution of C-terminal regions of dermorphin and dermenkephalin to opioid-sites sel

Differential contribution of C-terminal regions of dermorphin and dermenkephalin to opioid-sites sel

  1. Anonymous
    Biochem Biophys Res Commun. 1989 Sep 15;163(2):726-32.
    Sagan S, Amiche M, Delfour A, Camus A, Mor A, Nicolas P

    Abstract

    Dermorphin and dermenkephalin are D-aminoacid containing peptides generated from processing of the plurifonctional biosynthetic precursor pro-dermorphin. Dermorphin, Tyr-D-Ala-Phe-Gly-Tyr-Pro-Ser-NH2 (DRM) and dermenkephalin, Tyr-D-Met-Phe-His-Leu-Met-Asp-NH2 (DREK), are among the most selective and potent agonists described respectively for the mu- and delta-opioid receptors. In order to identify determinants of selectivity and high-affinity receptor binding of dermorphin and dermenkephalin, a series of analogs was investigated for their affinity at the mu- and delta-receptors in the brain. The tetrapeptide amino end of both DRM and DREK were found to display high affinity and selectivity towards mu-receptors. Substitution of the C-terminal tripeptide of DREK with that of DRM reversed the receptor selectivity of DREK from delta to mu. Replacement of the C-terminal tripeptide of DRM with the C-terminal counterpart of DREK shifted the selectivity of DRM from mu to delta. These data emphasize the critical contribution of the carboxy end of DREK to delta-selectivity. They further suggest that the potent mu-address lying in the N terminus of DREK is overwhelmed by the powerful delta-directing ability of the carboxy end. Unlike DREK, the C-terminus of DRM is not involved in opioid receptor sites selection but is important insofar as it serves to stabilize interactions of DRM with the mu-receptor binding site.