1. Dear Drugs-Forum readers: We are a small non-profit that runs one of the most read drug information & addiction help websites in the world. We serve over 4 million readers per month, and have costs like all popular websites: servers, hosting, licenses and software. To protect our independence we do not run ads. We take no government funds. We run on donations which average $25. If everyone reading this would donate $5 then this fund raiser would be done in an hour. If Drugs-Forum is useful to you, take one minute to keep it online another year by donating whatever you can today. Donations are currently not sufficient to pay our bills and keep the site up. Your help is most welcome. Thank you.
    PLEASE HELP

Differential role of 5-HT1A and 5-HT1B receptors on the antinociceptive and antidepressant effect of

Differential role of 5-HT1A and 5-HT1B receptors on the antinociceptive and antidepressant effect of

  1. Jatelka
    Psychopharmacology (2006) 188:111–118

    Esther Berrocoso, M. Olga Rojas-Corrales
    Juan A. Mico

    RATIONALE: Tramadol, (1RS,2RS)-2-[(dimethylamine)-methyl]-1-(3-methoxyphenyl)-cyclohexanol hydrochloride, is an atypical analgesic which binds weakly to ì-opioid receptors and enhances the extra-neuronal concentration of noradrenaline and serotonin by interference with both the uptake and release mechanisms.

    OBJECTIVES: The present study was undertaken to evaluate the potential role of 5-HT1A and 5-HT1B receptors on the analgesic and antidepressant-like effect of tramadol. METHODS: The effect of either a selective 5-HT1A receptor antagonist (WAY 100635; N-2-[4-(2-methoxyphenyl-1-piperazinyl]ethyl]-N-2-pyridinylcyclohexane carboxamide; 0.2-0.8, 8 mg/kg) or a selective 5-HT1B receptor antagonist (SB 216641; N-[3-(3-dimethylamino) ethoxy-4-methoxyphenyl]-2'-methyl-4'-(5-methyl-1,2,4-oxadiazol-3-yl)-(1,1'-biphenyl)-4-carboxamide; 0.2-0.8, 8 mg/kg) was investigated in mice in combination with tramadol by means of the hot-plate test, a phasic nociceptive model, and the forced swimming test, a paradigm aimed at screening potential antidepressants.

    RESULTS: The results showed that WAY 100635 enhanced the antinociceptive effect and produced a large decrease in the antidepressant-like effect of tramadol. In contrast, SB 216641 did not significantly modify either the analgesic or the antidepressant-like effects of tramadol.

    CONCLUSIONS: These findings suggest that 5-HT1A receptors modulate the analgesic and the antidepressant-like effects of tramadol in differing ways. The results suggest the involvement of the 5-HT1A autoreceptors from the raphe nuclei and spinal 5-HT1A receptors in the antinociceptive effect. In contrast, the 5-HT1A receptors located in the forebrain may be responsible for the blockade of the antidepressant-like effect of tramadol. 5-HT1B receptors seem not to modify these effects in the models investigated.


    Discussion Thread