1. Dear Drugs-Forum readers: We are a small non-profit that runs one of the most read drug information & addiction help websites in the world. We serve over 4 million readers per month, and have costs like all popular websites: servers, hosting, licenses and software. To protect our independence we do not run ads. We take no government funds. We run on donations which average $25. If everyone reading this would donate $5 then this fund raiser would be done in an hour. If Drugs-Forum is useful to you, take one minute to keep it online another year by donating whatever you can today. Donations are currently not sufficient to pay our bills and keep the site up. Your help is most welcome. Thank you.
    PLEASE HELP

Doping control analysis of metamfepramone and two major metabolites using liquid chromatography-tand

Doping control analysis of metamfepramone and two major metabolites using liquid chromatography-tand

  1. Anonymous
    Eur J Mass Spectrom (Chichester, Eng).2009;15(4):507-15.
    Thevis M, Sigmund G, Thomas A, Gougoulidis V, Rodchenkov G, Schänzer W.

    The sympathomimetic agent metamfepramone (2-dimethylamino-1-phenylpropan-1-one, dimethylpropion) is widely used for the treatment of the common cold or hypotonic conditions. Due to its stimulating properties and its rapid metabolism resulting in major degradation products such as methylpseudoephedrine and methcathinone, it has been considered relevant for doping controls by the World Anti-Doping Agency (WADA). The rapid degradation of the active drug complicates the detection of metamfepramone itself but the metabolites methylpseudoephedrine and methcathinone can be monitored, and the finding of the latter in particular allows the inference of a metamfepramone administration. In order to improve sports drug testing procedures, metamfepramone, methylpseudoephedrine and methcathinone were characterized using electrospray ionization-high resolution/high accuracy mass spectrometry, and a method employing liquid chromatography/tandem mass spectrometry was established that allowed the analysis of these three analytes by direct injection of 2 microL of urine specimens. The assay was validated with regard to specificity, lower limits of detection (2-10 ng mL(-1)), intraday and interday precision (3-17%) and ion suppression/enhancement effects. The developed procedure has been used to verify or falsify suspicious signals observed in routine screening procedures based on gas chromatography/mass spectrometry and yielded an adverse analytical finding concerning a metamfepramone administration in an authentic doping control sample. Although the active drug was not detected, the indicative metabolites methylpseudoephedrine and methcathinone were considered sufficient to infer the application of the prohibited drug.