1. Dear Drugs-Forum readers: We are a small non-profit that runs one of the most read drug information & addiction help websites in the world. We serve over 4 million readers per month, and have costs like all popular websites: servers, hosting, licenses and software. To protect our independence we do not run ads. We take no government funds. We run on donations which average $25. If everyone reading this would donate $5 then this fund raiser would be done in an hour. If Drugs-Forum is useful to you, take one minute to keep it online another year by donating whatever you can today. Donations are currently not sufficient to pay our bills and keep the site up. Your help is most welcome. Thank you.
    PLEASE HELP

Extent and variability of the first-pass elimination of adinazolam mesylate in healthy male voluntee

Extent and variability of the first-pass elimination of adinazolam mesylate in healthy male voluntee

  1. Anonymous
    Pharm Res. 1991 Feb;8(2):162-7.
    Fleishaker JC, Friedman H, Pollock SR.

    Abstract

    The pharmacokinetics of adinazolam and N-desmethyladinazolam (NDMAD) were studied in 14 healthy male volunteers who received 15 mg adinazolam mesylate orally as a solution and 5 mg adinazolam mesylate intravenously in a crossover design. Two weeks prior to the crossover study, each subject received 5 mg/kg indocyanine green (ICG) as an intravenous bolus injection to estimate liver blood flow. The absolute bioavailability (F), calculated as the dose-corrected ratio of oral to iv adinazolam area under the curve (AUC) values, was found to be 39%. NDMAD AUC values were similar following oral and iv administration, and adinazolam mean absorption time was approximately 0.77 hr. Thus, adinazolam is completely and rapidly absorbed after oral administration in man; the incomplete bioavailability is due to first-pass metabolism. Mean liver blood flow, adinazolam systemic clearance, blood/plasma ratio, and extraction ratio were 1189 ml/min, 498 ml/min, 0.70, and 0.57, respectively. The extraction ratio agrees with that calculated as 1-F (0.62), suggesting that the liver is primarily responsible for first-pass metabolism of adinazolam. The unbound fraction of adinazolam in plasma was 0.31 (range, 0.25-0.36); adinazolam free intrinsic clearance (a reflection of metabolic capacity) was 4285 ml/min (range, 2168-6312 ml/min). These results suggest that the majority of the variability in adinazolam plasma concentrations following oral administration is due to the variability in the metabolic capacity of the liver for adinazolam, rather than variability in plasma protein binding.
Tags: