1. Dear Drugs-Forum readers: We are a small non-profit that runs one of the most read drug information & addiction help websites in the world. We serve over 4 million readers per month, and have costs like all popular websites: servers, hosting, licenses and software. To protect our independence we do not run ads. We take no government funds. We run on donations which average $25. If everyone reading this would donate $5 then this fund raiser would be done in an hour. If Drugs-Forum is useful to you, take one minute to keep it online another year by donating whatever you can today. Donations are currently not sufficient to pay our bills and keep the site up. Your help is most welcome. Thank you.
    PLEASE HELP

Indolealkylamine analogs share 5-HT2 binding characteristics with phenylalkylamine hallucinogens

Indolealkylamine analogs share 5-HT2 binding characteristics with phenylalkylamine hallucinogens

  1. Anonymous
    Eur J Pharmacol. 1988 Jan 19;145(3):291-7.
    Lyon RA, Titeler M, Seggel MR, Glennon RA.

    Abstract
    Twenty-one indolealkylamines, some of which are known to be psychoactive in man, were examined for their binding interactions with rat brain cortical 5-HT2 receptors labeled with the antagonist radioligand [3H]ketanserin in order to develop structure-activity relationships for binding at these sites. Features investigated included aromatic, alpha-methyl and terminal amine substituents. 4-Methoxy and 5-methoxy substitution impart a higher affinity than 6- or 7-methoxy substitution; a 7-hydroxyl group essentially abolishes affinity whereas a 7-methyl or 7-bromo group enhances affinity. alpha-Methylation has little effect on affinity and, in the one case examined, the S(+) isomer of alpha-methyltryptamine was essentially equipotent with its racemate and twice as potent as its R(-) enantiomer. Terminal amine methylation results in a small but progressive decrease in affinity in the order: primary amine greater than dimethylamine greater than diethylamine. Similarities were noted between these structural requirements for binding and those of the phenalkylamines. Selected compounds (5-methoxytryptamine, N,N-dimethyltryptamine, 5-methoxy-N,N-diethyltryptamine and 5-methoxy-N,N-dimethyltryptamine) were further examined by two-site analysis of displacement studies for [3H]ketanserin specific binding. Hill coefficients were significantly less than unity and computer-assisted analysis indicated that a two-site model better fit the data than a one-site model. In displacement studies using the putative agonist radioligand [3H]DOB to label 5-HT2 receptors affinities were 10-100-fold higher than those using [3H]ketanserin. These results are also consistent with earlier findings using psychoactive phenalkylamines in competition studies for radiolabelled 5-HT2 receptors.