1. Dear Drugs-Forum readers: We are a small non-profit that runs one of the most read drug information & addiction help websites in the world. We serve over 4 million readers per month, and have costs like all popular websites: servers, hosting, licenses and software. To protect our independence we do not run ads. We take no government funds. We run on donations which average $25. If everyone reading this would donate $5 then this fund raiser would be done in an hour. If Drugs-Forum is useful to you, take one minute to keep it online another year by donating whatever you can today. Donations are currently not sufficient to pay our bills and keep the site up. Your help is most welcome. Thank you.
    PLEASE HELP

Interactive effects of methylphenidate and alcohol on discrimination, conditioned place preference a

Interactive effects of methylphenidate and alcohol on discrimination, conditioned place preference a

  1. Calliope
    Psychopharmacology, 2013, Vol.225(3), pp.613-25

    Griffin, William C ; Mcgovern, Robin W ; Bell, Guinevere H ; Randall, Patrick K ; Middaugh, Lawrence D ; Patrick, Kennerly S

    Prior research indicates methylphenidate (MPH) and alcohol (ethanol, EtOH) interact to significantly affect responses humans and mice. The present studies tested the hypothesis that MPH and EtOH interact to potentiate ethanol-related behaviors in mice. We used several behavioral tasks including: drug discrimination in MPH-trained and EtOH-trained mice, conditioned place preference (CPP), rota-rod and the parallel rod apparatus. We also used gas chromatographic methods to measure brain tissue levels of EtOH and the D- and L-isomers of MPH and the metabolite, ethylphenidate (EPH). In discrimination, EtOH (1 g/kg) produced a significant leftward shift in the MPH generalization curve (1–2 mg/kg) for MPH-trained mice, but no effects of MPH (0.625–1.25 mg/kg) on EtOH discrimination in EtOHtrained mice (0–2.5 g/kg) were observed. In CPP, the MPH (1.25 mg/kg) and EtOH (1.75 g/kg) combination significantly increased time on the drug paired side compared to vehicle (30.7 %), but this was similar to MPH (28.8 %) and EtOH (33.6 %). Footslip errors measured in a parallel rod apparatus indicated that the drug combination was very ataxic, with footslips increasing 29.5 % compared to EtOH. Finally, brain EtOH concentrations were not altered by 1.75 g/kg EtOH combined with 1.25 mg/kg MPH. However, EtOH significantly increased D-MPH and L-EPH without changing L-MPH brain concentrations.
    Conclusions The enhanced behavioral effects when EtOH is combined with MPH are likely due to the selective increase in brain D-MPH concentrations. These studies are consistent with observations in humans of increased interoceptive awareness of the drug combination and provide new clinical perspectives regarding enhanced ataxic effects of this drug combination.