1. Dear Drugs-Forum readers: We are a small non-profit that runs one of the most read drug information & addiction help websites in the world. We serve over 4 million readers per month, and have costs like all popular websites: servers, hosting, licenses and software. To protect our independence we do not run ads. We take no government funds. We run on donations which average $25. If everyone reading this would donate $5 then this fund raiser would be done in an hour. If Drugs-Forum is useful to you, take one minute to keep it online another year by donating whatever you can today. Donations are currently not sufficient to pay our bills and keep the site up. Your help is most welcome. Thank you.
    PLEASE HELP

Mechanism of inactivation of human cytochrome P450 2B6 by phencyclidine.

Mechanism of inactivation of human cytochrome P450 2B6 by phencyclidine.

  1. ThirdEyeFloond
    Drug Metab Dispos. 2006 Sep;34(9):1523-9. Epub 2006 Jun 16.

    Jushchyshyn MI, Wahlstrom JL, Hollenberg PF, Wienkers LC.

    The mechanism behind the observed inactivation of human P450 2B6 by phencyclidine (PCP) has been evaluated over the past 2 decades. The scope of the current investigation was to contribute to the fundamental knowledge of PCP oxidation and perhaps the mechanism behind P450 inactivation. To study the chemistry of PCP oxidation, we subjected PCP to the Fenton reagent. Under Fenton chemistry conditions, oxidation on all three PCP rings was observed by liquid chromatography/tandem mass spectrometry (LC-MS/MS). When PCP was incubated with the Fenton system in the presence of glutathione (GSH), three GSH-PCP conjugates were identified. Subsequent LC-MS/MS analysis of these conjugates revealed two species that had GSH attached to the cyclohexane ring of PCP and a third conjugate in which GSH was adducted to the piperidine ring. When PCP was incubated across a panel of P450 enzymes, several enzymes, including P450s 2D6 and 3A4, were able to catalyze the formation of the PCP iminium ion, whereas P450s 2B6 and 2C19 were exclusively able to hydroxylate secondary carbons on the cyclohexane ring of PCP. Subsequent mechanistic experiments revealed that only P450s 2B6 and 2C19 demonstrated loss of catalytic activity after preincubation with 10 microM PCP. Finally, investigation of P450 2B6 inactivation using structural analogs of PCP revealed that blocking the para-carbon atom on the cyclohexane ring of PCP from oxidation protected the P450 2B6 from inactivation, which suggests that a reactive intermediate generated during the hydroxylation of the cyclohexane ring may be linked to the mechanism of inactivation of P450 2B6 by PCP.