1. Dear Drugs-Forum readers: We are a small non-profit that runs one of the most read drug information & addiction help websites in the world. We serve over 4 million readers per month, and have costs like all popular websites: servers, hosting, licenses and software. To protect our independence we do not run ads. We take no government funds. We run on donations which average $25. If everyone reading this would donate $5 then this fund raiser would be done in an hour. If Drugs-Forum is useful to you, take one minute to keep it online another year by donating whatever you can today. Donations are currently not sufficient to pay our bills and keep the site up. Your help is most welcome. Thank you.
    PLEASE HELP

Metabolism of the psychotomimetic tryptamine derivative 5-methoxy-N,N-diisopropyltryptamine in human

Metabolism of the psychotomimetic tryptamine derivative 5-methoxy-N,N-diisopropyltryptamine in human

  1. Jatelka
    Drug Metabolism and Disposition 2006 Feb;34(2):281-7.

    Kamata, Tooru ; Katagi, Munehiro ; Kamata, Hiroe T ; Miki, Akihiro ; Shima, Noriaki ; Zaitsu, Kei ; Nishikawa, Mayumi ; Tanaka, Einosuke ; Honda, Katsuya ; Tsuchihashi, Hitoshi

    Abstract
    The urinary metabolites of 5-methoxy-N,N-diisopropyltryptamine (5-MeO-DIPT) in humans have been investigated by analyzing urine specimens from its users. For the unequivocal identification and accurate quantification of its major metabolites, careful analyses were conducted by gas chromatography/mass spectrometry, liquid chromatography/mass spectrometry, and liquid chromatography-tandem mass spectrometry, using authentic standards of each metabolite synthesized. Three major metabolic pathways were revealed as follows: 1) side chain degradation by O-demethylation to form 5-hydroxy-N,N-diisopropyltryptamine (5-OH-DIPT), which would be partly conjugated to its sulfate and glucuronide; 2) direct hydroxylation on position 6 of the aromatic ring of 5-MeO-DIPT, and/or methylation of the hydroxyl group on position 5 after hydroxylation on position 6 of the aromatic ring of 5-OH-DIPT, to produce 6-hydroxy-5-methoxy-N,N-diisopropyltryptamine (6-OH-5-MeO-DIPT), followed by conjugation to its sulfate and glucuronide; and 3) side chain degradation by N-deisopropylation, to the corresponding secondary amine 5-methoxy-N-isopropyltryptamine (5-MeO-NIPT). Of these metabolites, which retain structural characteristics of the parent drug, 5-OH-DIPT and 6-OH-5-MeO-DIPT were found to be more abundant than 5-MeO-NIPT. Although the parent drug 5-MeO-DIPT was detectable even 35 h after dosing, no trace of its N-oxide was detected in any of the specimens examined.