1. Dear Drugs-Forum readers: We are a small non-profit that runs one of the most read drug information & addiction help websites in the world. We serve over 4 million readers per month, and have costs like all popular websites: servers, hosting, licenses and software. To protect our independence we do not run ads. We take no government funds. We run on donations which average $25. If everyone reading this would donate $5 then this fund raiser would be done in an hour. If Drugs-Forum is useful to you, take one minute to keep it online another year by donating whatever you can today. Donations are currently not sufficient to pay our bills and keep the site up. Your help is most welcome. Thank you.
    PLEASE HELP

Pharmacokinetics, pharmacodynamics and the pharmacokinetic/pharmacodynamic relationship of zolpidem

Pharmacokinetics, pharmacodynamics and the pharmacokinetic/pharmacodynamic relationship of zolpidem

  1. Jatelka
    J Psychopharmacol 2009 Jul 31 [Epub ahead of print]

    de Haas S, Schoemaker R, van Gerven J, Hoever P, Cohen A, Dingemanse J

    Abstract: Zolpidem is one of the most frequently prescribed hypnotics, as it is a very short-acting compound with relatively few side effects. Zolpidem's short duration of action is partly related to its short elimination half-life, but the associations between plasma levels and pharmacodynamic (PD) effects are not precisely known. In this study, the concentration-effect relationships for zolpidem were modelled. Zolpidem (10 mg) was administered in a double-blind, randomised, placebo-controlled trial to determine PD and pharmacokinetics (PK) in 14 healthy volunteers. Zolpidem was absorbed and eliminated quickly, with a median Tmax of 0.78 h (range: 0.33-2.50) and t1/2 of 2.2 h. Zolpidem reduced saccadic peak velocity (SPV), adaptive tracking performance, electroencephalogram (EEG) alpha power and visual analogue scale (VAS) alertness score and increased body sway, EEG beta power and VAS 'feeling high'. Short- and long-term memory was not affected. Central nervous system effects normalised more rapidly than the decrease of plasma concentrations. For most effects, zolpidem's short duration of action could be adequately described by both a sigmoid Emax model and a transit tolerance model. For SPV and EEG alpha power, the tolerance model seemed less suitable. These PK/PD models have different implications for the mechanism underlying zolpidem's short duration of action. A sigmoid Emax model (which is based on ligand binding theory) would imply a threshold value for the drug's effective concentrations. A transit tolerance model (in which a hypothetical factor builds up with time that antagonises the effects of the parent compound) is compatible with a rapid reversible desensitisation of GABAergic subunits.