1. Dear Drugs-Forum readers: We are a small non-profit that runs one of the most read drug information & addiction help websites in the world. We serve over 4 million readers per month, and have costs like all popular websites: servers, hosting, licenses and software. To protect our independence we do not run ads. We take no government funds. We run on donations which average $25. If everyone reading this would donate $5 then this fund raiser would be done in an hour. If Drugs-Forum is useful to you, take one minute to keep it online another year by donating whatever you can today. Donations are currently not sufficient to pay our bills and keep the site up. Your help is most welcome. Thank you.

Suppression of noxious stimulus-evoked activity in the ventral posterolateral nucleus of the thalamu

Suppression of noxious stimulus-evoked activity in the ventral posterolateral nucleus of the thalamu

  1. Behrang
    The Journal of Neuroscience, October 15, 1996, 16(20):6601–6611

    William J. Martin, Andrea G. Hohmann, and J. Michael Walker

    The CNS contains a putative cannabinergic neurotransmitter and an abundance of G-protein-coupled cannabinoid receptors. However, little is known about the function of this novel neurochemical system. Cannabinold agonists produce antinociception in behavioral tests, suggesting the possibility that this system serves in part to modulate pain sensitivity. To explore this possibility, the effects of the cannabinoid agonist WIN 55,212-2 on nociceptive neurons in the ventroposterolateral (VPL) nucleus of the thalamus were examined in urethane-anesthetized rats. After identification of a nociresponsive neuron, a computer-controlled device delivered graded pressure stimuli to the contralateral hindpaw. WIN 55,212-2 (0.0625, 0.125, and 0.25 mg/kg, i.v.) suppressed noxious stimulus-evoked activity of VPL neurons in a dose-dependent and reversible manner. Noxious stimulus-evoked firing was affected more than spontaneous firing. These effects were apparently mediated by cannabinoid receptors, because the cannabinoid receptor-inactive enantiomer of the drug (WIN 55,212-3, 0.25 mg/kg) failed to alter the activity of this population of cells. Administration of morphine (0.5 mg/kg, i.v.) produced effects that were very similar to those produced by the cannabinoid. WIN 55,212-2 (0.25 mg/kg, i.v.) failed to alter the responses of non-nociceptive low-threshold mechanosensitive neurons in the VPL WIN 55,212-2 produced antinociceptive effects with a potency and time course similar to that observed in the electrophysiological experiments, despite the differences in the anesthetic states of the animals used in these experiments. The antinociceptive and electrophysiological effects on VPL neurons outlasted the motor effects of the drug. Furthermore, the changes in nociceptive responding could not be attributed to changes in skin temperature. Taken together, these findings suggest that cannabinoids decrease nociceptive neurotransmission at the level of the thalamus and that one function of endogenous cannabinoids may be to modulate pain sensitivity.