1. Dear Drugs-Forum readers: We are a small non-profit that runs one of the most read drug information & addiction help websites in the world. We serve over 4 million readers per month, and have costs like all popular websites: servers, hosting, licenses and software. To protect our independence we do not run ads. We take no government funds. We run on donations which average $25. If everyone reading this would donate $5 then this fund raiser would be done in an hour. If Drugs-Forum is useful to you, take one minute to keep it online another year by donating whatever you can today. Donations are currently not sufficient to pay our bills and keep the site up. Your help is most welcome. Thank you.
    PLEASE HELP

The effects of non-medically used psychoactive drugs on monoamine neurotransmission in rat brain

The effects of non-medically used psychoactive drugs on monoamine neurotransmission in rat brain

  1. NeuroChi
    We developed a reproducible, simple, and small-scale method for determining the re-uptake and release of monoamines (dopamine, serotonin (5-HT) and norepinephrine) using rat brain synaptosomes. These assays were then applied to study the effects of different kinds of non-medically used psychoactive drugs on monoamine re-uptake and release. The phenethylamine derivatives, 4-fluoroamphetamine, 2-methylamino-3,4-methylenedioxy-propiophenone (methylone), 1-(1,3-benzodioxol-5-yl)-2-butanamine (BDB), and N-methyl-1-(1,3-benzodioxol-5-yl)-2-butanamine (MBDB), had strong inhibitory effects on the re-uptake of dopamine, 5-HT and norepinephrine. 4-Fluoroamphetamine, methylone and BDB also strongly increased the release of the three monoamines, but MBDB increased 5-HT and norepinephrine release, but had little effect on dopamine release. However, 2,5-dimethoxy-4-iodophenethylamine (2C-I), 2,5-dimethoxy-4-ethylphenethylamine (2C-E), 2,5-dimethoxy-4-chlorophenethylamine (2C-C), 2,4,5-trimethoxyamphetamine (TMA-2) and 2,4,6-trimethoxyamphetamine (TMA-6), which are methoxylated phenethylamine derivatives, slightly influenced the re-uptake and release of monoamines. α-Metyltryptamine (AMT), a tryptamine derivative, was one of the strongest re-uptake inhibitors and releasers of the three monoamines. The tryptamine derivative, 5-methoxy-α-methyltryptamine (5-MeO-AMT), also strongly inhibited re-uptake and increased the release of the three monoamines. N,N-dipropyltryptamine (DPT), 5-methoxy-N,N-diisopropyltryptamine (5-MeO-DIPT), 5-methoxy-N,N-methylisopropyltryptamine (5-MeO-MIPT), and 5-methoxy-N,N-dimethyltryptamine (5-MeO-DMT) inhibited
    monoamine re-uptake, but had a few effects on monoamine release. 1-(3-Chlorophenyl)piperazine (3CPP) and 1-(methoxyphenyl)piperazine (4MPP), which are piperazine derivatives, inhibited monoamine re-uptake and accelerated their release. The results suggest that some designer drugs strongly act on the central nerve system to the same extent as restricted drugs.