1. Dear Drugs-Forum readers: We are a small non-profit that runs one of the most read drug information & addiction help websites in the world. We serve over 4 million readers per month, and have costs like all popular websites: servers, hosting, licenses and software. To protect our independence we do not run ads. We take no government funds. We run on donations which average $25. If everyone reading this would donate $5 then this fund raiser would be done in an hour. If Drugs-Forum is useful to you, take one minute to keep it online another year by donating whatever you can today. Donations are currently not sufficient to pay our bills and keep the site up. Your help is most welcome. Thank you.
    PLEASE HELP

The Spin Trap Reagent PBN Attenuates Degeneration of 5HT Neurones in Rat Brain Induced by p-Chloroam

The Spin Trap Reagent PBN Attenuates Degeneration of 5HT Neurones in Rat Brain Induced by p-Chloroam

  1. Anonymous
    Neuropharmacology, Vol. 35, No. 11, pp. 1615-1620, 1996
    Murray et al

    Abstract
    Dark Agouti rats injected with either p-chloroamphetamine (PCA; 2.5 mg/kg i.p.) or fenfluramine (15 mg/kg i.p.) had substantial decreases (approximately 50%) in the concentration of 5-HT and 5-HIAA and binding of [3H]paroxetine in the cerebral cortex 7 days later. This indicates that both compounds had produced neurodegeneration of 5-HT axon terminals. Two doses of alpha-phenyl-N-tert-butyl nitrone (PBN; 150 mg/kg i.p.) 130 min apart had no effect on cortical 5-HT content or [3H]paroxetine binding. However, when PBN (150 mg/ kg) was given 10 min before and 120 min after PCA (2.5 mg/kg) it attenuated the PCA-induced neurodegeneration. In contrast, PBN was without significant effect on the fenfluramine-induced damage. Changes in rectal temperature following either the neurotoxins or neurotoxins+ PBN were no more than +/-1 degree C of saline-injected control rats. These data indicate that PCA, like MDMA, probably induces neurotoxic degeneration because of the formation of catechol or quinone metabolites and subsequent reactive tree radical formation. Such a mechanism does not appear to explain fenfluramine-induced damage to 5-HT neurones.