1. Dear Drugs-Forum readers: We are a small non-profit that runs one of the most read drug information & addiction help websites in the world. We serve over 4 million readers per month, and have costs like all popular websites: servers, hosting, licenses and software. To protect our independence we do not run ads. We take no government funds. We run on donations which average $25. If everyone reading this would donate $5 then this fund raiser would be done in an hour. If Drugs-Forum is useful to you, take one minute to keep it online another year by donating whatever you can today. Donations are currently not sufficient to pay our bills and keep the site up. Your help is most welcome. Thank you.
    PLEASE HELP

The third transmembrane helix of the cannabinoid receptor plays a role in the selectivity of aminoal

The third transmembrane helix of the cannabinoid receptor plays a role in the selectivity of aminoal

  1. ThirdEyeFloond
    J Pharmacol Exp Ther. 1999 Nov;291(2):837-44.

    Chin CN, Murphy JW, Huffman JW, Kendall DA.

    Two subtypes of the human cannabinoid receptor have been identified. The CB1 receptor is primarily distributed in the central nervous system, whereas the CB2 receptor is associated with peripheral tissue, including the spleen. These two subtypes are also distinguished by their ligand-binding profiles. The goal of this study was to identify critical residues in transmembrane region III (TM3) of the receptors that contribute to subtype specificity in ligand binding. For this purpose, a chimeric cannabinoid receptor [CB1/2(TM3)] was generated in which the TM3 of CB1 was replaced with the corresponding region of CB2. These receptors were stably expressed in Chinese hamster ovary cells for evaluation. The binding affinities of CB1/2(TM3) and the wild-type CB1 receptor to several prototype ligands were similar with one notable exception: the chimeric receptor exhibited a 4-fold enhancement in binding affinity to WIN 55,212-2 (K(d) = 4.8 nM) relative to that observed with CB1 (K(d) = 21.7 nM). Two additional aminoalkylindoles, JWH 015 and JWH 018, also bound the chimeric receptor (K(i) = 1.0 microM and 1.4 nM, respectively) with higher affinity compared with the wild-type CB1 (K(i) = 5.2 microM and 9.8 nM, respectively). Furthermore, the increase in binding affinities of the aminoalkylindoles were reflected in the EC(50) values for the ligand-induced inhibition of intracellular cAMP levels mediated by the chimeric receptor. This pattern mirrors the selectivity of WIN 55,212-2 binding to CB2 compared with CB1. Site-specific mutagenesis of the most notable amino acid changes in the chimeric receptor, Gly195 to Ser and Ala198 to Met, revealed that the enhancement in WIN 55,212-2 binding is contributed to by the Ser but not by the Met residue. The data indicate that the amino acid differences in TM3 between CB1 and CB2 play a critical role in subtype selectivity for this class of compounds.