TMA-6 (2,4,6-trimethoxyamphetamine) is a psychedelic phenethylamine similar to mescaline both in molecular structure and effects. It produces visual effects like movement in surface textures, tracers, and also has an emotive or entactogenic component. Physical effects such as stimulation and nausea have been reported. The experience lasts longer than more common psychedelics and its 2,4,5 substituted analog TMA-2, over 12 hours.
Using TMA-6
Ways of administration
OralEffects of TMA-6
TMA-6 is similar to other psychedelic drugs like mescaline. Patterns emerge and textures can appear to come to life, colors can be intensified. Lower doses (20mg) cause changes in cognitive processing and more somatic sensations, and stimulation, while higher doses (50mg) cause more visual/psychedelic effects to emerge, however some users describe it as sedative in nature. Users have described a distinct awareness of body sensations, tension and position of skeletal muscles. Entactogenic and/or euphoric components of MDA or MDMA have been reported. Feels of energy flowing through the body, racing thoughts, and epiphanies are common.Combinations with TMA-6
Different Uses for TMA-6
Chemistry of TMA-6
Column 1 Column 2 Systematic(IUPAC) name: 1-(2,4,6-Trimethoxyphenyl)propan-2-amine Synonyms: 2,4,6-trimethoxyamphetamine Molecular Formula: C12H19NO3, C12H19NO3.HCl (hydrochloride) Molar mass: 225.28 g/mol, 261.74 g/mol (hydrochloride)[1] CAS Registry Number: 15402-79-6 Melting Point: 207-208°C (hydrochloride) Boiling Point: no data Flash Point: no data Solubility: Additionnal data: no data Notes: Reagent test results of TMA-6
The dangers of TMA-6
TMA-6 likely produces similar side effects as TMA-2: Bradycardia and Hypothermia. TMA-6 is contraindicated with medications that affect heart rate and/or blood pressure.
These are the dangers common to all psychedelic drugs:
Accidental injury. When on a psychedelic drug, it is easier to accidentally injure yourself. Also because of the disorientating and potentially delusion inspiring nature of the experience, you could be lead to inflict harm on others or yourself. People have fallen off rooftops, run into traffic, attempted to throw people off rooftops as 'sacrifices', drowned, and so on. The best way of protecting against this is to have a friend with you who is sober to look after you and handle any negative situation that might arise.
Bad trips. A bad trip is a negative psychedelic experience. It can range from a mildly negative feeling of anxiety/discomfort, to full-blown psychosis. Bad trips usually ruin a psychedelic experience for the tripper and everyone else. Most bad trips are manageable, just very uncomfortable and difficult. Some are extreme and unmanageable though. It's not uncommon for a bad trip to result in lingering psychological issues. Usually just a few days of negative emotions and anxiety. Sometimes, however, a week or so of serious anxiety, destabilized mental state and impaired functioning is possible. On very rare occasions, a month or two of severely diminished functioning, traumatized mental state, depression & crippling anxiety can occur. More information on bad trips can be found here. The best way of avoiding a bad trip is having the correct set and setting.
Permanent psychosis. Psychedelics are believed by researchers not to cause permanent psychosis, however they could trigger a latent mental illness in someone who was already predisposed to it, or make existing mental illnesses worse. If there is a history of mental illness in your family, you are more likely to be predisposed. Everyone is at some risk, however.
PTSD, anxiety disorder, depression & depersonalization. There are anecdotal reports of the trauma inflicted by some bad trips leading to depression and anxiety which while usually temporary, could potentially develop into lasting disorders. While no different to the potential of any traumatic event to cause lasting disorders, nonetheless this is a danger of psychedelic drug use.
Producing TMA-6
SYNTHESIS: To a solution of 100 g phloroglucinol dihydrate in 320 mL MeOH there was added 55 mL of concentrated H2SO4, and the clear solution held under reflux conditions overnight. After cooling, there was added 500 mL H2O, and the bulk of the MeOH was removed under vacuum. The residual oil was extracted with Et2O, and the removal of this left 60 g of a red oil as residue. This was dissolved in 300 g methyl sulfate (caution, this is extremely toxic through skin contact, and any exposure must be flushed thoroughly with dilute ammonium hydroxide). With good stirring, this was cautiously treated with 500 g of 40% aqueous KOH, and the exothermic reaction allowed to run its course. Extraction with 3x100 mL Et2O gave, after evaporation of the solvent from the pooled extracts, an oil that became largely crystalline. This was suspended in 100 mL hexane, and filtered through a coarse fritted funnel. With evaporation there was obtained 57 g of 1,3,5-trimethoxybenzene as a pale amber solid that melted at 44-50 °C. A sample purified by recrystallization from EtOH had the proper mp of 54-55 °C.
A mixture of 62.9 g N-methylformanilide and 71.3 g of POCl3 was allowed to stand for 0.5 h producing a light claret color. There was then added 30.9 g of 1,3,5- trimethoxybenzene and the mixture heated on the steam bath for 2 h. The reaction mixture then was poured into chipped ice, and allowed to stir for several h. The dark gummy mess was extracted with 2x100 mL Et2O (this was discarded) and then with 4x200 mL CH2Cl2. The latter extracts were pooled, and stripped of solvent under vacuum yielding 14 g of an amber solid. This was recrystallized from 80 mL boiling MeOH (with decolorizing charcoal employed and filtration of the boiling solution through paper) to give 10.0 g of 2,4,6-trimethoxybenzaldehyde as a white crystalline solid with a mp of 115-116 °C. The literature values are generally one-degree ranges, and they are reported as high as 121 °C. The malononitrile adduct was prepared from a solution of 0.5 g aldehyde and 0.5 g malononitrile in 10 mL warm MeOH treated with a drop of triethylamine. There was an immediate formation of a yellow crystalline mass which was removed by filtration, washed with EtOH, and air dried. The yield of 2,4,6-trimethoxybenzalmalononitrile was 0.5 g and the mp was 174-175 °C. Anal. (C13H12N2O3) N.
A solution of 5 g 2,4,6-trimethoxybenzaldehyde in 20 g nitroethane was treated with 1.0 g of anhydrous ammonium acetate and held on the steam bath for 24 h. The excess solvent/reagent was stripped from the deep-red colored solution under vacuum yielding a residue that spontaneously set to a crystalline mass. This was well triturated under 5 mL MeOH, filtered, and washed with 3 mL additional MeOH to give 5.4 g of 2-nitro-1-(2,4,6-trimethoxyphenyl)propene as yellow crystals. The mp of the crude material was 135-142 °C which could be raised to 147-148 °C by recrystallization from EtOH. The use of an alternate procedure for the synthesis of this nitrostyrene, using acetic acid as solvent and a stoichiometric amount of nitroethane (and ammonium acetate as catalyst), gave very poor yields. The use of butylamine as catalyst gave considerably better results.
A suspension of 50 g LAH in 1 L anhydrous THF was placed under an inert atmosphere, stirred magnetically, and brought to a gentle reflux. There was added a total of 56.9 g 2-nitro-1-(2,4,6-trimethoxyphenyl)propene as a saturated solution in THF. This was achieved by letting the condensed THF drip through a Soxhlet thimble containing the nitrostyrene with direct addition to the reaction mixture. The solubility was extremely low. The stirred mixture was maintained at reflux for 36 h, generating a smooth creamy gray color. After being brought to room temperature, the excess hydride was destroyed by the patient addition of 50 mL H2O, followed with 50 mL 15% NaOH (still some heat evolved) and then 150 mL additional H2O. Stirring was continued until the insoluble salts were white and loose. These solids were removed by filtration, and the filter cake washed with additional THF. The combined filtrate and washes were stripped of solvent under vacuum, and the 73 g of pale amber residue dissolved in 200 mL IPA, neutralized with approximately 50 mL concentrated HCL, and diluted with 2 L anhydrous Et2O. A lower, oily phase separated slowly set up as a crystalline mass. This was removed by filtration, Et2O washed, and allowed to air dry to constant weight. The weight of 2,4,6-trimethoxyamphetamine hydrochloride was 41.3 g and the color was an off-white. There was a tendency to discolor upon air exposure. The mp was 204-205 °C which was increased to 207-208 °C upon recrystallization from IPA. The literature gives a mp of 214-215 °C for this salt after isolation and purification as the picrate salt (with a mp 212-213 °C from EtOH).
Forms of TMA-6
Legal status of TMA-6
United Nations
USA
EU
Other Countries
History of TMA-6
More TMA-6 Sections
TMA-6 experiences
The latest TMA-6 threads
References
Tags: